

VAWA DRINKING WATER SYSTEM

2010 ANNUAL REPORT

Prepared by:
Brenda Royce

Process and Compliance Technician
Ottawa Valley Hub
04/02/2011

Ontario Clean Water Agency Agence Ontarienne Des Eaux

Foreword

This document contains three different reports required for the Petawawa Drinking Water

- Regulation 170/03 Section 11, Annual Report, as per the SDWA, 2002- Section 11 of the Ontario
- Summary Report, as per the SDWA, 2002- Schedule 22 of the Ontario Regulation 170/03
- Summary of the Raw Water values that were submitted to the Ministry of the Environment under the Ontario Regulation 387/04, SDWA, 2002- Water Taking and

the office of the municipality and on the municipality internet site. and the Annual Report be made available for inspection by any member of the public during normal business hours, without charge. These reports are to be made available for inspection at Section 12 of Ontario Regulation 170/03 of the SDWA, 2002, requires both the Summary Report

SUMMARY REPORT
2010

PETAWAWA DRINKING WATER SYSTEM

2010 SUMMARY REPORTS FOR MUNICIPALITIES

Report

System, published in accordance with Schedule 22 of Ontario's Drinking-Water Systems Drinking Water System. Petawawa Drinking Water System is categorized as a Large Municipal Residential Regulation for the reporting period of January 1, 2010 to December 31, 2010. The This report is a summary of water quality information for the Petawawa Drinking Water

Petawawa. This report was prepared by the Ontario Clean Water Agency on behalf of Town of

Who gets a copy of the Report:

the municipal council; in the case of a drinking-water system owned by a municipality, the members of

What must the Report contain?

The report must,

- (a) list the requirements of the Act, the regulations, the system's approval and any order that the system failed to meet at any time during the period covered by the report and specify the duration of the failure; and
- **3** for each failure referred to in clause (a) describe the measures that were taken to

taken to correct the failure: The following table lists the requirements that the system failed to meet and the measures

- s	W	L D
SDWA 170/03	SDWA 170/03	Drinking Water Legislation
95901	94283 9406	AWQI
Distribution Total Coliform – TC result of 13 from Ultramar on Petawawa Blvd.	4th quarter annual running average (THM total- 126 ug/L, THM average- 104 ug/L)	List the requirement(s) the system failed to meet
07-Jul-10 to 13-Jul-10	12-Apr-10 to 20-Apr-10	Specify the duration of the failure (i.e. date(s))
Re-sampled and sent for testing on July 7th, 2010. Results from re-samples received on July 13th, 2010 showed water quality was no longer adverse. No further action required.	Re-sampled on April 12, 2010 and results were TTHM- 78.2 ug/L & running average of 104 ug/L. No further action required as per instructions from local Health Unit.	Describe the measures taken to correct the failure
Completed	Completed	Status (complete or outstanding)

PETAWAWA DRINKING WATER SYSTEM

2010 SUMMARY REPORTS FOR MUNICIPALITIES

SDWA 170/03
97890
Distribution Total Coliform – TC result of 20 from Town Office on Victoria Street.
07-Sept-10 to 15-Sept-10
Flushed main and re-sampled and sent for testing on Sept. 9, 2010. Results from re-samples received on Sept. 14th, 2010 showed water quality was no longer adverse. No further action required.
Completed

The Ministry of Environment 2010 inspection report noted the following:

n November 10th,	The Ministry of Environment conducted their annual site visit for the 2010 reporting year on November 10th,	l their annual site visit fi	vironment conducted	The Ministry of Environment conducted their annual site visit for the 2010 reporting year on November 10th,	The N
em (Complete, In progress)	Action Taken to Address Item		liem	<u> </u>	##

Town Public Works staff. As of today, February 11th, 2011, we have not received the Draft Report.

What else must the Report contain?

uses of the system: owner of the system to assess the capability of the system to meet existing and planned The report must also include the following information for the purpose of enabling the

- Summary of the quantities and flow rates of the water supplied during the period daily instantaneous peak flow rates covered by the report, including monthly average and maximum daily flows and
- 'n flow rates approved in the system's approval A comparison of the summary referred to in paragraph 1 to the rated capacity and

Attached is a copy of the Annual Record of Water Taking for the Petawawa Drinking Water System. This document contains all required flow information.

When Does the Report Get Submitted?

by March 31. of a contract, the owner of the system shall give a copy of the report to the municipality If a report is prepared for a system that supplies water to a municipality under the terms

Ontario Clean Water Agency Agence Ontarienne Des Beur

Annual Record Of Surface Water Taking Relevé annual des priess d'eau de surface

Personal information contained on this form is collected under the authority of the Oriento Water Precourses Act, Section 20. The Purpose of the form is to record claimle and information about the telegraph of under armonity. Cheetians should be directed to the respective hub office in your area.

Las remadynaments personnals qui figurant dans la précent fermulaire sont requelle en varie de l'article 20 de la Lai sur les ressources en seu de l'Onterio. Ce formulaire sont à donnters les alfielle et les rensellgements concernant in price d'est avruelle. Prière d'adresser louise questions su personnel du bureau régional de votre accieur.

Year(Armés): 2010 Location: PW - Rev Water	Permit A	io (Nº de pen	mi): 2135-62	DPPS	. \$0	rce: Allumes	in Later (Other	na filer)	:			•		•		
Name of Pamilian; Main de fluishe de pemis						ling Address:			,							
Location Of Taking: Lieu de la prise d'eau	Contan a	idunisipality; u murinipalisi Palemana				nonesion;		Lot				***		<u> </u>		
	Jan/2010	Pab/2010	Mar/2010	Apr/2010	May/2010	Jun/2010	Jul/2010	Aug/2010	Sep/2010	Oct/2010	Novi2010	Dec/2010	<- Total →	<- Avc. →		<- Cifleria->
Total Hours of Taiding	274.0	221. 0	875.0	201.0	0.000	100.0	794.0	686.0	000.0	400.0	48.0	240.0				4- Climid-3
Ang Cally Taking(m2)	6,772.0	3,481.48	8,441,50	8,707.72	7,461.46	7,244.2	L014.00	7,570,94	6,680,4				\$,013.0	400,75		
Total Ant of Taking(m3)	174,600.0	162,041.0	100,000,0	171,556.0	\$40,405.0	217,496,0	267,748.4	244,278.0		4,796.66	\$,544.co	8,784.Q8		6,485.66		En 800.0
Nax Delly Floor(mt)	0,200.0	2.254.0	£97£0	4,000.0	11,000.0	6,100.0	13,113.4	•	201,004,0	177,808.5	176,301.0	170,730.0	2.070,00W.G			
Ang Daily Plate of Takings (100)	66.81	88. 1	CM	88.00	84.02	22.24		10,000.0	10,007.0	7,448.0	. 6,000.0	4,534.0			14,112.0	21,6000.0
Peak Daily Rate of Taking(Liked)	146.0	144.87	145.85				16.33	MT	80,46	01.05	97.60	67.11		76.17		_
Peak Dally Note of Talding(Little)	2,010.0	LUCO	-	\$76.4D	#1.#	221.00	220.07	864.07	MA.18	886.1	190, 19	200.07	•		889.1	. 246.84
The same of the sa	42120		A.FIA.O	12,061.0	13,000.0	18,488.0	12,204,0	10,000.0	19,000.0	14,000.0	16,366.0	14,480.ò			14,890,0	14,880.4

SECTION 11
ANNUAL REPORT 2010

Drinking-Water Systems Regulation O. Reg. 170/03 Section 11- Annual Report

System Information

Drinking Water System Name	Petawawa Drinking Water System
Drinking Water System Number	210002101
System Owner	Town of Petawawa
Operating Authority	Ontario Clean Water Agency
Drinking Water System Category	Large Municipal Residential
Reporting Period	January 1, 2010 – December 31, 2010

Summary Report (170/03 Schedule 22) will be available for inspection at:

Town of Petawawa
1111 Victoria Street
Petawawa, ON
K8H 2E6

system: List all Drinking Water Systems which receive all of their drinking water from your

Federal jurisdiction	CFB Petawawa
Drinking Water System Number	Name

Provide a brief description of the system:

is used for disinfection. during the water treatment process. Dual media filters provide filtration and chlorine gas flocculation, and sedimentation. Pre and post pH adjustment with soda ash is also utilized as the primary and polymer as the secondary coagulant to achieve coagulation, Petawawa Water Treatment Plant is a conventional water treatment system using PAS-8 Fluoridation is also practiced

What Treatment Chemicals were used during the Reporting Year:

Kemira	Coagulant Aid	Superfloc A-100 Flocculant (Polymer)
Brenntag	Disinfection	Chlorine Gas
Quadra & CCC	pH Adjustment	Soda Ash Dense
Mid-Chem Canada Ltd.	Fluoridation	Fluoride
Kemira	Coagulant	PAS-8
Supplier	Use	Chemical Name

Section 16-4 of Schedule 16: Summary of any Reports made to the Ministry under Subsection 18 (1) of the Act or

Completed	Flushed main and resampled and sent for testing on Sept. 9th, 2010. Results from re-samples received on Sept. 14th, 2010 showed water quality was no longer adverse. No further action required.	07-Sept-10 to 15-Sept-10	Distribution Total Coliform – TC result of 20 from Town Office on Victoria Street.	97890	SDWA 170/03
Completed	Re-sampled and sent for testing on July 7th, 2010. Results from re-samples received on July 13th, 2010 showed water quality was no longer adverse. No further action required.	07-Jul-10 to 13-Jul-10	Distribution Total Coliform – TC result of 13 from Ultramar on Petawawa Blvd.	95901	SDWA 170/03
Completed	Re-sampled on April 12, 2010 and results were TTHM- 78.2 ug/L & running average of 104 ug/L. No further action required as per instructions from local Health Unit.	12-Apr-10 to 20-Apr-10	4th quarter annual running average (THM total- 126 ug/L, THM average- 104 ug/L)	94283 & 94406	SDWA 170/03
STATUS	CORRECTIVE ACTION TAKEN	Cause DURATIO N	PARAMETER/EQUIPMENT FAILURE	AWQI #	DRINKING WATER LEGISLATION

Does your Drinking-Water System serve more than 10 000 people?

YES

NO

If yes, is your annual report available to the public at no charge on a web site on the internet?

YES

ð

free of charge? Indicate how you notified system users that your annual report is available, and is

- Notice via Government Office
- Town of Petawawa internet Web-Site

Regulatory Sample Results Summary-

Microbiological Testing (Ont. Reg. 170/03, Sch.10, Sch.11 or Sch.12 & Ont. Reg. 169/03 Standards - Not Detectable):

1100000	Treated	Raw	
321	52	53	# of E-coli Samples Taken
0-0	0-0	0-10	E-Coli Results (min-max)
321	52	53	# of Total Coliform Samples Taken
0-500	0-0	0-25	Total Coliform Results (min-max)
321	52	1	# of HPC Samples Taken
0-106	0-21	38	HPC Results (min-max)

Operational Testing (Ont. Reg. 170/03, Sch. 7, Sch. 8 or Sch. 9):

Parameter	Ont. Reg. 170/03	Range of Results
	Standard	(min # - max #)
Filter #1 Turbidity	1 NTU	0 – 1.58 NTU
Filter #2 Turbidity	1 NTU	0 – 2.05 NTU
Filter #3 Turbidity	1 NTU	0 – 2.05 NTU
Treated Free Chlorine	0.05 mg/L - 4 mg/L	0.76 – 2.12 mg/L*
Distribution Free Chlorine **	0.2 mg/L - 4.0 mg/L	0 - 5.11 mg/L*
Fluoride	1.5 mg/L***	0 – 1.15 mg/L

power outages. All spikes are reviewed for compliance with O. Reg. 170/03 and reported as required. **Includes all Booster Stations (2) and Tower (4) samples. *spikes recorded by on-line instrumentation were a result of various maintenance/calibration activities and

Summary of Additional Non-Required Samples: In-House

	5 TCU (AO)**	103	Treated Water Colour
			Aluminum
0 - 0.036 me/L	0.1 mg/L (OG)	103	Treated Water
			Alkalinity
$\sqrt{L (OG)^*}$ 20 – 39 mg/L	30 - 500 mg/L (OG)*	103	Treated Water
		-	Turbidity
U 0.075 – 0.219 NTU	UTN 1	103	Treated Water
			Fluoride
g/L 0.41 – 0.92 mg/L	1.5 mg/L	801	Treated Water
			Free Chlorine
4.0 mg/L 1.08 – 1.87 mg/L	0.05 mg/L - 4.0 mg/L	106	Treated Water
able	applicable		
MAC), as	Standard (MAC), as	taken	
59/03 (min # - max #)	Reg. 169/03	samples	• .
0/03 / Ont. Range of Results	Ont. Reg. 170/03 / Ont.	# of grab	Parameter

^{***}Where fluoride is added to drinking water, it is recommended that the concentration be adjusted to 0.5 0.8 mg/L which is the optimum level for the control of tooth decay. Where supplies contain naturally occurring fluoride at levels higher than 1.5 mg/L, but less than 2.4 mg/L, the Ministry of Health and Long Document for Ontario Drinking Water Standards, Objectives and Guidelines, June 2006, MOE PIBS awareness to control excessive exposure to fluoride from other sources (taken from the Technical Support 4449e01). Term Care recommends an approach through the local boards of health to raise public and professional

0.068 – 0.376 NTU	1 NTU	100	Filter #3 Turbidity
0.069 – 0.346 NTU	UTN 1	102	Filter #2 Turbidity
0.069 = 0.241 NTU	INTU	102	Filter #1 Turbidity
			Chlorine
0.01 - 1.92 mg/L	0.2 mg/L - 4.0 mg/L	804	Distribution Free

Laboratory

				_		_		$\overline{}$				_							_	-
Hardness	Distribution Water	Total Dissolved Solids	Distribution Water	Distribution Water pH	Distribution Water Conductivity	Distribution Water Colour	Distribution Water Alkalinity	Treated Water Fluoride	Treated Water Hardness	Total Dissolved Solids	Treated Water	Treated Water pH	Treated Water Conductivity	Treated Water Colour	Treated Water Alkalinity				Parameter	
	156		156	156	156	156	156	54	52	-	52	52	52	54	54			samples taken	# of grab	
(OG)	80 - 100 mg/L	(AO)	500 mg/L	6.5 - 8.5 (OG)	300 – 500 uS/cm	5 TCU (AO)	30 – 500 mg/L (OG)	1.5 mg/L	80 100 mg/L (OG)	(AO)	500 mg/L	6.5 – 8.5 (OG)	300 – 500 uS/cm	5 TCU (AO)	30 - 500 mg/L (OG)	applicable	Standard (MAC), as	Ont. Reg. 169/03	Ont. Reg. 170/03/	
	14.0 - 31.0 mg/L		83.0 – 110.0 mg/L	7.01 – 7.92	127.0 - 168.0 uS/cm	2.0 – 6.0 TCU	24 – 42 mg/L	0.1 - 0.66 mg/L	14 – 32 mg/L		80 – 105 mg/L	6.94 – 7.75	123 – 162 uS/cm	1-4 TCU	23 – 42 mg/L			(min # • max #)	Range of Results	

Summary of Additional Samples:

Reason	Certificate of Approval # 7373-7H2K93			
Date of Issuance/Complaint	30-Sep-08			·
Parameter	Backwash Effluent Suspended Solids	•		
Date Sampled	11-Jan-10	6-Apr-10	07-Jul-10	15-Oct-10
Result	11-Jan-10 4.0 mg/L	6-Apr-10 9.0 mg/L	07-Jul-10 7.0 mg/L	15-Oct-10 4.0 mg/L*

mg/L. *The annual average for Backwash Effluent Suspended Solids is 6.0 mg/L which is below the limit of 25

^{*(}OG) - Operational Guidelines- are established for parameters that, if not controlled, may negatively affect the efficient and effective treatment, disinfection and distribution of the water.

**(AO) - Aesthetic Objectives- are established for parameters that may impair the taste, odour or colour of water, or which may interfere with good water quality control practices (taken from the Technical Support Document for Ontario Drinking Water Standards, Objectives and Guidelines, MOE PIBS 4449e01, June

Summary of Inorganic Parameters Tested or Most Recent Sample Results: MAC = Maximum Allowable Concentration as per O. Reg. 169/03

Parameter	Sample Date	Result	Ont. Reg. 169/03 Standard (MAC)	Exceedence of MAC	Exceedence of 1/2 MAC
Antimony	Jan 11/10	< 0.1 ug/L	6 ug/L	No	No
Arsenic	Jan 11/10	< 1.0 ug/L	25 ug/L	No	No
Barium	Jan 11/10	< 10.0 ug/L	1000 ug/L	oN	No
Boron	Jan 11/10	< 10.0 ug/L	5000 ug/L	No	No
Cadmium	Jan 11/10	< 0.1 ug/L	5 ug/L	No	No
Chromium	Jan 11/10	1.0 ug/L	50 ug/L	No	No
Mercury	Jan 11/10	< 0.1 ug/L	1 ug/L	ON	No
Selenium	Jan 11/10	< 1.0 ug/L	10 ug/L	No	No
Sodium	Jan 11/10	20 mg/L	20 mg/L	No	Yes*
Uranium	Jan 11/10	< 1.0 ug/L	20 ug/L	No	No
Fluoride Residual: Mean	Dec 29/10	< 0.1 mg/L	1.5 mg/L	No	No
1 st Quarter Nitrite	Jan11/10	< 0.1 mg/L	1 mg/L	No	No
2 nd Quarter Nitrite	Apr 6/10	< 0.1 mg/L	1 mg/L	No	No
3 rd Quarter Nitrite	Jul 5/10	< 0.1 mg/L	1 mg/L	No	No
4th Quarter Nitrite	Oct 4/10	< 0.1 mg/L	1 mg/L	No	No
1 st Quarter Nitrate	Jan 11/10	0.18 mg/L	10 mg/L	No	No
2 nd Quarter Nitrate	Apr 6/10	0.25 mg/L	10 mg/L	No	No
3 rd Quarter Nitrate	Jul 510	0.12 mg/L	10 mg/L	No	No
4th Quarter Nitrate	Oct 4/10	0.16 mg/L	10 mg/L	No	No
+t	- A CO	7. 1	- di ad Offi di II l	the continued with	

sodium concentration exceeds 20 mg/L, so this information may be passed on to local physicians for their Ontario Drinking Water Standards, Objectives and Guidelines, June 2006, MOE PIBS 4449e01). 200mg/L at which it can be detected by a salty taste (taken from the Technical Support Document for use with patients on sodium restricted diets. The aesthetic objective for sodium in drinking water is *Sodium is required to be tested every 60 months. The local Medical Officer of Health is notified when the

(MAC) Summary of Lead Sampling: (Ont. Reg. 169/03 Standard = 10 ug/L or 0.01 mg/L

Round #3 - December 15/08 to April 15/09

Residential Samples-

60	# of Samples	
0	" Adverse (> 0.01 mg/L)	# 1
1	1/2 MAC (0.005 mg/L)	# Exceed
0.005	Max Result (mg/L)	Lead Sample #1
< 0.001	Min Result (mg/L)	mple #1
0.003	Max Result (mg/L)	Lead Sample #2
< 0.001	Min Result (mg/L)	mple #2
7.83	Max Result	Į.
7.05	Min Result	E ·

Non-Residential Samples-

# of Samples	
# Adverse (> 0.01 mg/L)	# A dispers
\ 2	_
Max Result (mg/L)	Lead Sa
Min Result (mg/L)	mple #1
Max Result (mg/L)	Lead Sample #2
Min Result (mg/L)	mple #2
Max Result	Į.
Min Result	H
	s mg/L) mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L)

Distribution Samples-

12	# of Samples	
0	(> 0.01 mg/L)	# Adverse
0	1/2 MAC (0.005 mg/L)	# Exceed
0.002	Max Result (mg/L)	Lead Sample #
< 0.001	Min Result (mg/L)	mple #1
7.63	Max Result	p
7.27	Min Result	H
34	Max Result	Alka
27	Min Result	linity

Summary of Lead Sampling:

Round #4 – June 15/09 to October 15/09

Residential Samples-

60	# of Samples
0	# Adverse (> 0.01 mg/L)
0	# Exceed 1/2 MAC (0.005 mg/L)
0.004	Lead Sample #1 Max Min Result Result (mg/L) (mg/L)
< 0.001	mple #1 Min Result (mg/L)
0.002	Lead Sample #2 Max Min Result Result (mg/L) (mg/L)
< 0.001	mple #2 Min Result (mg/L)
7.52	Max Result
6.94	H Min Result

Non-Residential Samples-

6	# of Samples	
0	(> 0.01 mg/L)	# Advance
1	1/2 MAC (0.005 mg/L)	# Exceed
0.005	Max Result (mg/L)	Lead Sample #1
< 0.001	Min Result (mg/L)	mple #1
0.004	Max Result (mg/L)	Lead San
< 0.001	Min Result (mg/L)	mple #2
7.24	Max Result	ر ام
7.07	Min Result	H

Distribution Samples-

12	# of Samples	
0	(>0.01 mg/L)	# Advanca
0	1/2 MAC (0.005 mg/L)	# Exceed
0.003	Max Result (mg/L)	Lead Sample #1
< 0.001	Min Result (mg/L)	mple #1
7.28	Max Result	p
7.09	Min Result	H
40	Max Result	Alka
38	Min Result	linity

Summary of Lead Sampling: Reduced Sampling- next round for the Town of Petawawa will be from December 15, 2011 to April 15, 2012 and from June 15, 2012 to October 15, 2012.

Summary of Organic Parameters Tested or Most Recent Result: MAC = Maximum Allowable Concentration as per O. Reg. 169/03

			Ont. Reg.		
Parameter	Sample Date	Result	169/03	Exceedence	Exceedence
	Curries vanc	(ug/L)	Standard (MAC)	of MAC	of 1/2 MAC
Alachlor	Jan 11, 2010	< 0.5	5 ug/L	No	No
Aldicarb	Jan 11, 2010	< 5.0	1/gu 6	No	oN
Aldrin + Dieldrin	Jan 11, 2010	< 0.01	0.7 ug/L	No	No
Atrazine + N-Dealkylated metobolites	Jan 11, 2010	< 0.2	5 ug/L	No	No
Azinphos-methyl	Jan 11, 2010	< 2.0	20 ug/L	No	No
Bendiocarb	Jan 11, 2010	< 2.0	40 ug/L	No	No
Benzene	Jan 11, 2010	< 0.5	5 ug/L	No	No
Benzo(a)pyrene	Jan 11, 2010	< 0.01	0.01 ug/L	No	No
Bromoxynil	Jan 11, 2010	<0.5	5 ug/L	No	No
Carbaryl	Jan 11, 2010	< 5.0	90 ug/L	No	No
Carbon Tetrachloride	Jan 11, 2010	×0.5	7.11g/I	N NO	N NO
Chlordane (Total)	Jan 11, 2010	< 0.02	7 ug/L	No	No
Chlorpyrifos	Jan 11, 2010	< 1.0	90 ug/L	No	No
Cyanazine	Jan 11, 2010	< 1.0	10 ug/L	No	No
Diazinon	Jan 11, 2010	< 1.0	20 ug/L	No	No
Dicamba	Jan 11, 2010	<1.0	120 ug/L	No	No No
1,2-Dichlorobenzana	Ian 11 2010	×0.4	200 ug/L	N N	N N
Dichlorodiphenyltrichloroethane	Jan 11, 2010	< 0.02	30 ug/L	No	No
1 2-Dichloroethane	Ian 11, 2010	<0.5	5 ug/L	N _o	No.
1,1-Dichloroethylene	Jan 11, 2010	< 0.5	14 ug/L	No	No
Dichloromethane	Jan 11, 2010	< 4.0	50 ug/L	No	No
2,4-Dichlorophenol	Jan 11, 2010	< 0.5	900 ug/L	No	No
2,4-Dichlorophenoxy acetic acid (2,4-D)	Jan 11, 2010	< 1.0	100 ug/L	No	No
Diclofop-methyl	Jan 11, 2010	<0.9	9 ug/L	No	N _O
Dinoseh	Jan 11, 2010	×1.0	10 ug/L	N S	Z
Diquat	Jan 11, 2010	< 7.0	70 ug/L	No	No
Diuron	Jan 11, 2010	< 10.0	150 ug/L	No	No
Glyphosate	Jan 11, 2010	< 10.0	280 ug/L	No	Z _o
Heptachlor + Heptachlor Epoxide	Jan 11, 2010	< 0.01	3 ug/L 4 ug/I	Z Z	Z 2
Malathion	Jan 11, 2010	< 5.0	190 ug/L	No	No
Methoxychlor	Jan 11, 2010	< 0.02	900 ug/L	No	No
Metolachior	Jan 11, 2010	×0.5	20 ug/L	S S	No
Monochlorohenzene	Jan 11, 2010	< 0.2	80 ug/L	No la	No
Paraquat	Jan 11, 2010	< 1.0	10 ug/L	No	No
Parathion	Jan 11, 2010	< 1.0	50 ug/L	No	No
Pentachlorophenol	Jan 11, 2010	<0.5	60 ug/L	No	No
Picloram	Jan 11, 2010	\$ 10 S	2 ug/L 190 ug/L	Z Z	Z Z
Polychlorinated Biphenyls (PCB)	Jan 11, 2010	<0.1	3 ug/L	No	No
Prometryne	Jan 11, 2010	< 0.25	1 ug/L	N _O	No
Simazine THM (Traine)	Jan 11, 2010 2010	48 45	100 mg/L	Z Z	S S
I HM (Treated)	0107	40.40	T/Sn oot	140	740

_	_	ĺ	_	Γ	Γ	<u> </u>	Γ	Γ-	Γ	Г	Π	_	
Vinyl Chloride	Trifluralin	(2,4,5-T)	2,4,5-Trichlorophenoxy acetic acid	2,4,6-Trichlorophenol	Trichloroethylene	Triallate	2,3,4,6-Tetrachlorophenol	Tetrachloroethylene	Terbufos	Temephos	(NOTE: show latest annual average)	THM (Distribution)	(NOTE: show latest annual average)
Jan 11, 2010	Jan 11, 2010		Jan 11, 2010	Jan 11, 2010	Jan 11, 2010	Jan 11, 2010	Jan 11, 2010	Jan 11, 2010	Jan 11, 2010	Jan 11, 2010		2010	
< 0.2	< 0.4	-	< 1.0	< 0.5	< 0.3	< 1.0	< 0.5	< 0.3	< 0.4	< 10.0		77.2	
2 ug/L	45 ug/L		280 ug/L	5 ug/L	5 ug/L	230 ug/L] 100 ug/L	30 ug/L	1 ug/L	280 ug/L		100 ug/L	
No	No		No	No	No	No	No	No	No	No		oN	
No	No		No	No	No	No	No	No	No	No		Yes	

Maintenance Summary-

Summary of Expenses Incurred for Installations, Repairs or Replacements:

Brief Description

BACK WATER VALVE PURCHASED FOR PUMPING STATION AT THE WATER TREATMENT PLANT IN PETAWAWA

MISCELLANEOUS CAPITAL ITEMS PURCHASED FOR REPAIR AND MAINTENANCE OF THE WATER TREATMENT FACILITY IN PETAWAWA.

PURCHASE OF PAINTING SUPPLIES FOR THE SODA ASH SILO AT WATER TREATMENT FACILITY IN PETAWAWA.

REPAIR OF ANCHOR POINTS ON CL2 HOIST AT THE WATER TREATMENT FACILITY IN PETAWAWA REPAIRS COMPLETED BY KEVIN BOIRE CONSTRUCTION LTD.

COMPLETION OF PROGRAMMING OF AUTOMATED CT CALCULATION COAGUENT FLOW METER AND ADDITION OF PASSWORDS FOR NEW EMPLOYEES AND FILTER PERFORMANCE.

PURCHASE OF NEW IP POSITIONER FOR ACTUATORS AT THE WATER TREATMENT FACILITY IN PETAWAWA AND ANOTHER FOR SPARE , AS THIS UNIT IS NO LONGER AVAILABLE.

REPLACEMENT OF HEAT CIRCULATING PUMP PARTS AND MOTORS SUPPLIED BY RICK'S ELECTRIC

REPLACED SOLENOID VALVE ON SODA ASH; INSTALLED HEAT CIRC PUMP ON BOILER; REPLACED SAMPLE PUMP FOR FILTER #1.

REPLACED SOLENOID ON SODA ASH.

INSTALLED HEAT CIRCULATION PUMP IN BOILER ROOM

REPLACEMENT OF PH SENSORS FOR PH ANALYZERS AT THE WTP IN PETAWAWA

REPLACED TWO BALLASTS IN LAB.

PUMP REBUILT AT PETAWAWA WATER TREATMENT PLANT.

REPAIR OF HIGH #2 PUMP MOTOR COMPLETED BY RICKS ELECTRIC.

REPLACEMENT MAIN BOARD REQUIRED FOR TOTAL CL2 ANALYZER AT THE WATER TREATMENT PLANT IN PETAWAWA.

REPLACEMENT OF #1 BOILER AND REPAIR MAINTENANCE OF #2 AND #3 BOILERS AT THE WATER TREATMENT FACILITY IN PETAWAWA.

PURCHASED REPLACEMENT OF CL17 FREE CL2 ANALYZER.

ANNUAL MAINTENANCE KITS AND BULBS PURCHASED FOR ONLINE ANALYZERS

HEAT CIRCULATING PUMPS AND HEATER FAN MOTORS PURCHASED AT THE WATER TREATMENT FACILITY IN PETAWAWA.

BATTERIES PURCHASED FOR BACKUP DIESEL GENERATOR AT THE WATER TREATMENT PLANT IN PETAWAWA

REPLACEMENT SEAL AND MINOR REPAIR KITS PURCHASED FOR PUMPS AT BS#2 & PUMP #4, DUE TO LEAKING.

ANNUAL WATER TAKING AND TRANSFER REPORT - SUBMITTED DATA TO MOE, FOR THE YEAR OF 2010

Town of Petawawa

Municipality:

Annual Water Taking Report

For the Year 2010

Raw Flow: Sum (m3/d)

Year:

Facility Name: [5710] - Petawawa Water Treatment Plant Water Source: Allumette Lake (Ottawa River) Works: [210002101] - Petawawa Water Treatment Plant Total Design Capacity (m3/day): 21,500.00 Classification: Class 4 Water Treatment Population Serviced: 13,328 January RW - Raw Water 5,445.000 5,361.000 5,892.000 5,201.000 6,008.000 5,786.000 5,554.000 6,079.000 5,387.000 6,062.000 6,214.000 6,032.000 5,968.000 5,826.000 5,977.000 RW - Raw Water 5,785.000 5,727.000 6,339.000 5,789.000 6,232.000 5,595.000 5,843.000 5,675.000 5,629.000 5,730.000 5,703.000 5,486.000 5,683.000 5,594.000February RW - Raw Water 5,876.000 5,926.000 5,796.000 5,858.000 5,897.000 5,645.000 5,410.000 6,008.000 6,043.000 6,550.000 4,019.000 5,649.000 5,454.000 5,207.000 5,479.000 RW - Raw Water 5,928.000 5,087.000 5,468.000 5,223.000 4,932.000 4,713.000 5,352.000 5,195.000 4,899.000 5,245.000 4,978.000 5,981.000 4,823.000

Annual Water Taking Report

For the Year 2010

March	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Rav	v Water		 													
	5,762.000	5,555.000	5,556.000	5,576.000	5,471.000	5,303.000	5,588.000	5,562.000	5,650.000	5,475.000	5,490.000	5,505.000	5,447.000	5,190.000	4,862.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Rav	v Water						***		·					, , , , , , , , , , , , , , , , , , , ,		
	5,144.000	5,392.000	5,002.000	5,395.000	4,909.000	4,861.000	5,729.000	5,410.000	5,444.000	5,729.000	5,975.000	5,434.000	5,329.000	5,766.000	5,426.000	5,746.000
April	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Rav	v Water						· · · · · · · · · · · · · · · · · · ·									
	5,876.000	5,403.000	5,345.000	5,185.000	5,235.000	5,357.000	5,483.000	5,889.000	5,419.000	5,235.000	5,616.000	5,398.000	6,809.000	5,810.000	5,613.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Rav	v Water											·	· · · · · ·			
	5,302.000	5,082.000	5,093.000	5,592.000	5,630.000	6,082.000	5,734.000	5,652.000	5,954.000	5,995.000	6,466.000	6,447.000	5,739.000	6,183.000	6,608.000	
May	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Rav	v Water										· ************************************				***************************************	
	5,706.000	5,507.000	6,306.000	6,259.000	6,421.000	6,739.000	6,134.000	5,619.000	4,996.000	5,871.000	6,518.000	6,561.000	6,646.000	6,522.000	6,286.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Rav	v Water					, -	·····								<u>",, </u>	
	5,831.000	7,287.000	9,758.000	9,304.000	10,226.000	9,964.000	9,605.000	9,249.000	9,370.000	11,346.000	11,693.000	9,134.000	8,676.000	7,308.000	8,722.000	8,871.000
June	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Rav	v Water															
	6,513.000	7,747.000	6,355.000	6,823.000	7,128.000	5,714.000	6,919.000	7,502.000	7,631.000	6,420.000	6,404.000	6,414.000	6,194.000	8,283.000	7,564.000	

Annual Water Taking Report

For the Year 2010

	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw V	Vater	**												······································		
	8,397.000	6,525.000	7,970.000	9,007.000	7,510.000	8,557.000	9,169.000	7,501.000	7,098.000	6,441.000	6,626.000	7,030.000	7,422.000	7,392.000	7,070.000	
July	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Raw V	Vater															
	6,614.000	6,827.000	8,136.000	8,572.000	9,584.000	11,140.000	11,068.000	11,280.000	9,531.000	6,167.000	7,445.000	9,439.000	13,113.000	6,943.000	8,481.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw V	Vater									<u>.</u>		···				
	7,996.000	9,044.000	7,123.000	7,539.000	7,946.000	8,748.000	6,480.000	7,834.000	5,589.000	6,241.000	7,005.000	8,698.000	9,147.000	7,381.000	8,361.000	8,273.000
August	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Raw V	Vater			***			,				ai.					
	7,921.000	8,216.000	7,510.000	7,081.000	7,419.000	8,684.000	7,325.000	7,066.000	6,503.000	7,596.000	8,323.000	9,243.000	8,932.000	9,199.000	8,033.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw V	Vater							· · · · ·	*				••		***	
	6,812.000	8,148.000	8,558.000	9,257.000	7,246.000	7,822.000	6,168.000	6,287.000	7,522.000	7,426.000	8,271.000	7,001.000	7,500.000	7,878.000	8,668.000	10,663.000
September	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Raw V	Vater											_			•	
	10,897.000	9,974.000	6,852.000	6,777.000	5,839.000	5,728.000	6,619.000	6,648.000	6,563.000	6,211.000	6,932.000	6,676.000	7,152.000	7,047.000	6,759.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw \	Vater										_	_			_	

7,878.000 6,869.000 6,906.000 6,329.000 7,199.000 7,139.000 6,786.000 6,782.000 8,194.000 6,254.000 5,920.000 6,675.000 7,030.000 6,472.000 5,417.000

Annual Water Taking Report

For the Year 2010

October	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Raw \	Vater		-	***				_					*			
	6,407.000	5,391.000	4,786.000	5,201.000	6,865.000	7,559.000	7,281.000	5,066.000	4,402.000	3,930.000	4,300.000	4,473.000	5,516.000	6,514.000	5,771.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw \	Vater			~					**							
	6,197.000	5,261.000	5,804.000	6,301.000	6,365.000	6,246.000	6,505.000	5,290.000	5,316.000	6,123.000	6,409.000	5,941.000	5,048.000	6,258.000	5,782.000	5,495.000
November	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Raw \	Vater			_						-		***	•	.		
	5,939.000	6,329.000	6,276.000	5,811.000	5,591.000	5,623.000	5,855.000	5,943.000	5,870.000	5,908.000	6,257.000	5,339.000	5,642.000	5,554.000	6,076.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw \	Vater															
	6,055.000	6,314.000	5,700.000	5,460.000	5,988.000	5,506.000	5,827.000	5,992.000	6,056.000	5,853.000	5,534.000	5,706.000	5,231.000	6,129.000	5,927.000	
December	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
RW - Raw \	Vater												*****			
	5,913.000	5,796.000	5,752.000	5,691.000	5,034.000	5,711.000	6,061.000	5,868.000	6,171.000	6,168.000	6,215.000	6,065.000	6,171.000	5,834.000	6,538.000	
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
RW - Raw \	Vater															
	6,138.000	5,759.000	6,375.000	5,680.000	5,436.000	6,394.000	5,767.000	5,420.000	5,939.000	5,533.000	5,159.000	5,431.000	5,581.000	5,293.000	5,364.000	5,482.000